Neuroinflammatory changes increase the impact of stressors on neuronal function.

نویسندگان

  • Alessia Piazza
  • Marina A Lynch
چکیده

In the last few years, several research groups have reported that neuroinflammation is one feature common to several neurodegenerative diseases and that similar, although perhaps less profound, neuroinflammatory changes also occur with age. Age is the greatest risk factor in many neurodegenerative diseases, and the possibility exists that the underlying age-related neuroinflammation may contribute to this increased risk. Several animal models have been used to examine this possibility, and it is now accepted that, under experimental conditions in which microglial activation is up-regulated, responses to stressors are exacerbated. In the present article, these findings are discussed and data are presented from in vitro and in vivo experiments which reveal that responses to Abeta (amyloid beta-peptide) are markedly up-regulated in the presence of LPS (lipopolysaccharide). These, and previous findings, point to a vulnerability associated with inflammation and suggest that, even though inflammation may not be the primary cause of neurodegenerative disease, its treatment may decelerate disease progression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Age-Related Neuroinflammatory Changes Negatively Impact on Neuronal Function

Neuroinflammatory changes, characterized by an increase in microglial activation and often accompanied by upregulation of inflammatory cytokines like interleukin-1beta (IL-1beta), are common to many, if not all, neurodegenerative diseases. Similar, though less dramatic neuroinflammatory changes, are also known to occur with age. Among the consequences of these changes is an impairment in synapt...

متن کامل

P130: The Role of Rho-Kinase (ROCK) in Microglia/Macrophage Polarization in Neuroinflammatory Diseases

Macrophage/microglia with heterogonous phenotype and function under physiological and pathological conditions are the main cell lineage involved in inducing immune responses in neuroinflammatory diseases which exhibit combined inflammatory and anti-inflammatory functions. An increase in the expression of iNOS triggers M1 phenotype that secrete high concentrations of inflammatory cytokines, whil...

متن کامل

P 100: Stem Cells as Neuroinflammatory Modulator in TBI: A Narrative Review

Traumatic brain injury (TBI) is physical damage to the brain structure which has a high global rate of mortality and morbidity. TBI can cause intense inflammatory response due to accumulation of leukocytes in cerebral matrix and activation of microglia. Microglia can differentiate into M1 macrophages or M2 macrophages following the changes in biochemical properties of brain tissue. M1 sub type ...

متن کامل

P11: The Effect of Flavonoids in Memory

Flavonoids may exert particularly powerful actions on mammalian cognition and may reverse age-related declines in memory and learning. Flavonoids can be modulated neuronal function and there by influencing memory, learning and cognitive function. Dietary supplementation with flavonoid-rich foods, such as blueberry, green tea and Ginkgo biloba lead to significant reversals of age-related deficit...

متن کامل

P151: The Effects of Boswellia Serrate on Central Nervous System

In the process of neuronal inflammation, an increased in inflammatory cytokines (IL-1β, IL-6 and TNF-α) from immune cells (leukocytes and macrophages), brain cells (microglia, astrocytes and neurons) and in hippocampus, amygdala occurs. Raise the level of cytokines result in reduced in production of molecules that are related to plasticity, especially BDNF, IGF-1 and VEGF. Microglia ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 37 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2009